
z/OMG The Next COBOL
Compiler Has Arrived!

Tom Ross
May 21, 2014

2

2

2

Standard Legal Disclaimer
© Copyright IBM Corporation 2014. All rights reserv ed. The information
contained in these materials is confidential and provided for informational
purposes only, and is provided AS IS without warranty of any kind, express or
implied. IBM shall not be responsible for any damages arising out of the use of,
or otherwise related to, these materials. Nothing contained in these materials is
intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and
conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services
do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or
feature availability in any way. IBM, the IBM logo, Rational, the Rational logo,
Telelogic, the Telelogic logo, and other IBM products and services are
trademarks of the International Business Machines Corporation, in the United
States, other countries or both. Other company, product, or service names may
be trademarks or service marks of others.

3

Introducing Enterprise COBOL V5

• Announced April 23, GA June 21 (2013)
• Introduces advanced optimization technology

� Designed to optimize applications for current and future System
z hardware

� Initiate delivery of performance improvements seen in C/C++
and Java compilers on System z

• Compiler “back end” is replaced with technology that has
long been in use in IBM's Java products. (Back end = part of
compiler that does code generation and optimization)
� Mature, robust compilation technology.
� New COBOL-specific optimizations have been added.

• Exploits z990, z890, System z9, System z10, zEnterprise
196, zEC12 and zBC12.

4

New Code Generator and Program Optimizer

• Common components means more timely exploitation of
future zArchitecture advances.

• Support modern development tools
� Tools supplied by ISV’s
� IBM z/OS Problem Determination Tools
� Rational Development Tools

• Continue to deliver new features
� to simplify programming and debugging to increase productivity
� to modernize existing business critical applications

• Use industry standard DWARF, with documented IBM
extensions to represent debug information.
� APIs are available to allow tools to inspect this information.

5

New Compiler Options for performance

• ARCH (6 | 7 | 8 | 9 | 10)
� Allows code generator to use instructions found in various levels of

z Architecture

• OPTIMIZE(0 | 1 | 2)
� Levels of optimization

• Higher levels improve run time performance

• Highest level has somewhat reduced “debuggability”

• STGOPT / NOSTGOPT
� Allows compiler to delete unreferenced data items

• HGPR (PRESERVE | NOPRESERVE)
� Use high word of registers (upper 32 bits of 64-bit registers)
� Effectively adds 16 more registers to improve optimization

• AFP(VOLATILE | NOVOLATILE)
� Use full complement of floating point registers.

6

New Compiler Options for usability

• DISPSIGN(SEP)
� DISPSIGN controls output formatting for DISPLAY of signed numeric

items.
� Can format overpunch sign as separate sign for easier to read output:

DISPLAY output with DISPSIGN(COMPAT): DISPSIGN(SEP):
positive binary 111 +111
negative binary 11J -111
positive packed-decimal 222 +222
negative packed-decimal 22K -222

• LVLINFO (installation option)
� Now 8 bytes instead of 4, you can put APAR, PTF, or your own numbers
� Example: LVLINFO=PN123456
� Listing header:

PP 5655-W32 IBM Enterprise COBOL for z/OS 5.1.0 PN123456
Date 05/20/2013 Time 10:45:03

Signature bytes:
00088E (+40) 00408000 =X'00408000' INFO. BYTES 24-27
000892 (+44) D7D5F1F2F3F4F5F6 =C'PN123456' USER LEVEL INFO (LVLINFO)

Compiler Options and Program Information Section End

7

Compatibility

• Provide Source and binary compatibility
• Most correct COBOL programs will compile and execute without

changes and produce the same results

� “Old” and “new” code can be mixed within an application and
communicate with static, dynamic and DLL calls

� No need to recompile entire applications to take advantage of
new V5 features

• Removed some old language extensions and options

� Millennium Language Extensions

� Label Declaratives
� Non-reentrant programs above 16MB line
� OS/VS COBOL Inter-operation
� COBOL V3 (COMPAT) XML PARSER
� Static AMODE 24 CALLs

8

COBOL language removed
• Millennium Language Extensions
• The removed elements are:

� DATE FORMATclause on data description
entries

� DATEVALintrinsic function
� UNDATE intrinsic function
� YEARWINDOWintrinsic function
� DATEPROCcompiler option
� YEARWINDOW compiler option

9

COBOL language removed

• LABEL DECLARATIVES
Format 2 declarative syntax:

USE … AFTER … LABEL PROCEDURE

And the syntax:

GO TO MORE-LABELS

are no longer supported.
� Note: GO TO is still supported.

10

ARCH compiler option details

11

Performance Improvements at all ARCH Levels

• The compiler accepts ARCH(6) – ARCH(10) all of which also exploit
� Relative Instruction

• Jumps (branches) and nested program calls can be relative to the executing
instruction

• Access to the literal pool can also be relative to the executing instruction
� Half word immediate instructions

• Load, Load Logical ANDs, ORs, Add and Subtract logical
� Twelve additional floating point registers
� Long Displacement Facility

• Many load/store instructions that have a 0-4095 displacement now have a “Y” format
with a -524,288 � 524,287 displacement reach

• Now one base register can cover much more working storage and this reduces need
for base locators

� 64 bit “G” form instructions
• 64 bit computations can be done in single registers vs piecewise in 32 bit registers
• Particularly useful for improving performance of COBOL BINARY data with more

than 9 digits

12

More Performance at Higher ARCH Levels

z9
ARCH(7)

z10
ARCH(8)

z196/z114
ARCH(9)

zEC12/zBC12
ARCH(10)

Extended Immediates

• 32 bit immediates in
arithmetic, logical,
compare instructions

• Save registers, literal
pool space and
executes faster

Decimal Floating Point

• Larger packed
multiply/divide in DFP
registers vs library call

• Also benefits other
decimal types
converted to packed for
arithmetic

Wider Immediate Moves

• 2,4,8 byte move
immediate instructions

• Benefits applications
with lots of VALUE
clauses and MOVES

Distinct Operands

• Many arithmetic,shift
instructions take two
source and produce
non-destructive result
to third register

• Better register
allocation, particularly
useful in striding
through tables

DFP/Zoned Conversions

• More efficient
conversions between
zoned decimal and
DFP

• Enables much greater
use of DFP

• One example
performs division in
0.22x cost vs staying in
zoned at lower arch
levels

13

ARCH quick reference

• ARCH(6)
� 2084-xxx models (z990)
� 2086-xxx models (z890)

• ARCH(7)
� 2094-xxx models (IBM System z9 EC)
� 2096-xxx models (IBM System z9® BC)

• ARCH(8)
� 2097-xxx models (IBM System z10 EC)
� 2098-xxx models (IBM System z10 BC)

• ARCH(9)
� 2817-xxx models (IBM zEnterprise z196 EC)
� 2818-xxx models (IBM zEnterprise z114 BC)

• ARCH(10)
� 2827-xxx models (IBM zEnterprise EC12)
� 2828-xxx models (IBM zEnterprise BC12)

14

• That sounds good, how about some
code generation examples to show
you ?

15

LONG DISPLACEMENT INSTRUCTIONS

Linkage Section.
01 DfhCommArea.

02 DfhStuff Pic x(32757).
02 DfhName Pic x(6).

Procedure Division Using
DfhCommArea.

V5
• Only one BLL
• All ARCH levels

L R0,0(,R1)

NILH R0,32767

ST R0,0(,R8)

V4
• Loop to initialize 8 BLL cells

LA 1,0(0,1)

ST 1,308(0,9) BLL=1

L 8,308(0,9) BLL=1

L 15,16(0,10)

LA 14,308(0,9) BLL=1

GN=13 EQU *

AL 1,12(0,10)

AH 14,24(0,10)

ST 1,0(0,14)

BCT 15,324(0,11) GN=13

MAP output – V4
1 DFHCOMMAREA BLL=00001

2 DFHSTUFF. BLL=00001
2 DFHNAME BLL= 00008

MAP output – V5
1 DFHCOMMAREA BLL=00001

2 DFHSTUFF. BLL=00001
2 DFHNAME BLL= 00001

Timing (100 million in a loop)
V5 : 4.44 cpu seconds
V4 : 5.15 cpu seconds

V5 is 14% faster

16

Decimal Divide Where Operands Exceed
Packed Decimal Hardware Limits

1 z14v2 pic s9(14)v9(2).
1 z13v2 pic s9(13)v9(2).
...
Compute z14v2 = z14v2 / z13v2

V5
• Inlined with 6 instructions
• CDZT/CZDT are new EC12 instructions to

convert between zoned and DFP types
• ARCH (10)

CDZT FP0,152(16,R8),0x8

CDZT FP1,168(15,R8),0x8

SLDT FP0,FP2,2

DDTR FP0,FP0,FP1

FIDTR FP0,9,FP0

CZDT FP0,152(16,R8),0x9

V4
• Calls out to library routine
• Runtime path length is > 100 instructions

PACK 344(9,13),0(16,2)

PACK 360(16,13),16(15,2)

MVC 376(32,13),59(10)

MVC 398(9,13),344(13)

NI 406(13),X'F0'

MVN 407(1,13),352(13)

L 3,92(0,9)

L 15,180(0,3)

LA 1,146(0,10)

BASR 14,15

NI 431(13),X'0F'

ZAP 431(9,13),431(9,13)

UNPK 0(16,2),431(9,13)

Timing (100 million in a loop)
V5 : 1.08 cpu seconds

V4 : 4.81 cpu seconds

V5 is 78% faster

17

Binary Arithmetic Conditional Precision Correction

1 b6v2a pic s9(6)v9(2) comp.

1 b6v2b pic s9(6)v9(2) comp.

...

Compute b6v2a = b6v2a + b6v2b

V5

• Divide (DR) to correct precision only
executed when actually required

• ARCH(8)

L R0,152(,R8)

A R0,160(,R8)

IILF R2,X'05F5E100'

LPR R1,R0

CLFI R1,X'05F5E100'

JL L081

SRDA R0,32

DR R0,R2

L081: EQU *

ST R0,152(,R8)

V4

• Divide (D) to correct precision
always executed but rarely needed
L 3,8(0,4)

A 3,0(0,4)

LR 2,3

SRDA 2,32(0)

D 2,0(0,12)

Timing (100 million in a loop)
V5 : 0.18 cpu seconds

V4 : 0.52 cpu seconds

V5 is 65% faster

18

Binary Arithmetic Operands Greater Than 9 Digits
1 b8v2a pic s9(8)v9(2) comp.
1 b8v2b pic s9(8)v9(2) comp.
...
Compute b8v2a = b8v2a + b8v2b

V5
• Makes use of ‘G’ format 64 instructions
• Conditional precision correction
• ARCH(6)

LLIHF R2,X'00000002'

IILF R2,X'540BE400'

LG R0,152(,R8)

AG R0,160(,R8)

LPGR R1,R0

CLGR R1,R2

JL L082

LGR R1,R0

DSGR R0,R2

STG R0,152(,R8)

L082 EQU *

V4
• Piecewise arithmetic plus decimal conversions

LM 2,3,0(4)

A 2,8(0,4)

AL 3,12(0,4)

BC 12,126(0,11)

A 2,4(0,12)

D 2,0(0,12)

CVD 3,376(0,13)

MVO 360(6,13),379(5,13)

CVD 2,376(0,13)

TM 365(13),X'10'

MVC 365(5,13),379(13)

BC 8,162(0,11)

OI 369(13),X'01'

MVI 363(13),X'00'

NI 364(13),X'0F'

MVC 376(8,13),103(10)

MVC 379(5,13),365(13)

CVB 2,376(0,13)

MVO 379(5,13),360(5,13)

CVB 7,376(0,13)

M 6,0(0,12)

ALR 7,2

BC 12,210(0,11)

A 6,4(0,12)

LTR 2,2

BC 11,220(0,11)

S 6,4(0,12)
STM 6,7,0(4)

Timing (100 million in a loop)
V5 : 0.23 cpu seconds

V4 : 1.92 cpu seconds

V5 is 88% faster

19

Instruction Scheduling For Performance
1 z7v2a pic s9(7)v9(2).
1 z7v2b pic s9(7)v9(2).
1 z7v2c pic s9(7)v9(2).

...
ADD 1 TO z7v2a z7v2b z7v2c

V5 – OPT(2)
• Independent operations are grouped to

reduce read after write hardware penalties
• ARCH(8)

PACK 352(5,R13),152(9,R8)

PACK 344(5,R13),168(9,R8)

PACK 336(5,R13),184(9,R8)

AP 352(5,R13),416(2,R3)

AP 344(5,R13),416(2,R3)

AP 336(5,R13),416(2,R3)

ZAP 352(5,R13),352(5,R13)

ZAP 344(5,R13),344(5,R13)

ZAP 336(5,R13),336(5,R13)

UNPK 152(9,R8),352(5,R13)

UNPK 168(9,R8),344(5,R13)

UNPK 184(9,R8),336(5,R13)

V4 – OPTIMIZE
• Instructions appear in original order and subject

to hardware read after write penalties

PACK 344(5,13),0(9,2)

AP 344(5,13),51(2,10)

ZAP 344(5,13),344(5,13)

UNPK 0(9,2),344(5,13)

PACK 344(5,13),16(9,2)

AP 344(5,13),51(2,10)

ZAP 344(5,13),344(5,13)

UNPK 16(9,2),344(5,13)

PACK 344(5,13),32(9,2)

AP 344(5,13),51(2,10)

ZAP 344(5,13),344(5,13)

UNPK 32(9,2),344(5,13)

Timing – (100 million in a loop)
V5 : 2.35 cpu seconds

V4 : 2.50 cpu seconds

V5 is 6% faster

20

Optimization of Decimal PICTURE Scaling

1 p8v0 pic 9(9) COMP-3.
1 p10v2 pic s9(10)v9(2) COMP-3.
...

COMPUTE p10v2 = p8v0 / 100

V5

• The optimizer cancels out the
decimal shift and decimal divide

• All ARCH levels
MVC 337(5,R13),152(R8)
MVN 341(1,R13),157(R8)
ZAP 160(7,R8),152(5,R8)

V4

• Explicit instructions for both
decimal shift and decimal divide

ZAP 344(8,13),0(5,2)

SRP 346(6,13),2(0),0

DP 344(8,13),42(2,10)

ZAP 8(7,2),344(6,13)

Timing (100 million in a loop)
V5 : 0.31 cpu seconds

V4 : 2.02 cpu seconds

V5 is 85% faster

21

Optimization of Initialization By Literals
Move +0 to WS3-COMP5

WS1-COMP3

WS2-COMP

WS6-DISPLAY

WS4-COMP1

WS7-COMP2

WS5-ALPHANUM

V5
• Entire out of order initializing sequence is

collapsed to a single instruction
• 6 instruction bytes
• All ARCH levels

MVC 152(56,R2),920(R3)

V4
• Individual initializing stores are generated
• 34 instruction bytes

LA 2,0(0,0)

L 3,300(0,9)

ST 2,16(0,3)

MVC 0(8,3),188(10)

MVC 8(8,3),177(10)

MVC 35(13,3),163(10)

ST 2,20(0,3)

MVC 48(8,3),177(10)

MVI 24(3),X'F0'

MVC 25(10,3),4(12)

Timing (100 million in a loop)
V5 : 0.16 cpu seconds

V4 : 0.25 cpu seconds

V5 is 36% faster

01 WS-GROUP.

05 WS1-COMP3 COMP-3 PIC S9(13)V9(2).

05 WS2-COMP COMP PIC S9(9)V9(2).

05 WS3-COMP5 COMP-5 PIC S9(5)V9(2).

05 WS4-COMP1 COMP-1.

05 WS5-ALPHANUM PIC X(11).

05 WS6-DISPLAY PIC 9(13) DISPLAY.

05 WS7-COMP2 COMP-2.

22

New compiler features introduced

• Improved usability
� Reduced administration overhead with support for

z/OS System Management Facilities (SMF) records
� New NOLOAD debugging segments in program object

• Debugging data always matches executable
• No separate debugging files to find or keep track of
• Executable does not have bigger loaded footprint

� New pseudo-assembly in program listings

23

Some New COBOL language features

24

Some New COBOL language features

•Floating comment delimiter
� *> to end of line is a comment

•Raise WORKING-STORAGE section size limit to 2GB
� (from 128MB)

•Larger individual data items
� Up to 999,999,999 bytes!

•Support for UNBOUNDED tables
� X OCCURS 1 To UNBOUNDED Depending on Y.
� LINKAGE SECTION only

25

Some new COBOL language introduced

• New Intrinsic Functions to improve handling of UTF-8 data
• XML GENERATE features for controlling document

generation
� NAME OF phrase

• User supplied element and attribute names

� TYPE OF phrase
• User control of attribute and element generation

� SUPPRESS phrase
• Suppression of "empty" attributes and elements

• XML PARSE feature for easier handling of split content:
� XML-INFORMATION special register

26

UTF-8 Unicode Built-in Functions

UTF-8 Characters are 1 – 4 bytes in length.

•ULENGTH: returns the logical length of a UTF-8 string
•UPOS: returns the byte position in a UTF-8 string of th e Nth

logical character.
•USBSTR: returns the sub-string of N logical characters s tarting

from a given logical character.
•UVALID: takes an alphanumeric or alpha or national ite m and

returns zero or the index of the first invalid UTF-8
(alphanumeric or alpha) or UTF-16 (national) characte r.

•UWIDTH: returns the width in bytes of the Nth logical character.
•USUPPLEMENTARY: takes a UTF-8 or UTF-16 string and re turns zero

or the first UNICODE supplementary character.

27

• We have 3 example programs

� New UTF-8 Intrinsic Functions
� New XML GENERATE features

� New XML PARSE features
• UTF-8 example

� Takes an XML document as input in UTF-8
� There is a bad character (not UTF-8) that

causes XML PARSE to fail

� Use UTF-8 functions to locate and fix bad char

Examples of COBOL new features

28

New UTF-8 Intrinsic Functions

PROCESS CODEPAGE(1153)
*-- -----------
* Sample program to illustrate what happens when XM L PARSE
* is used with an input UTF-8 document that has bee n corrupted
*-- -----------

Identification Division.
Program-id. UTF8B4.

Data Division.
Working-Storage section.

1 i Comp pic 99.
*-- -----------
* XML document with Czech characters in EBCDIC
*-- -----------

1 d pic x(99) value
'<Grp><D1>1324.56</D1><D2>Leoš Janáèek</D2></Grp>'.

1 u pic x(99).
Procedure Division.
*-- -----------
* Translate XML document from EBCDIC to UTF-8
*-- -----------

Move Function Display-of(Function National-of(d) 1 208)
to u

29

New UTF-8 Intrinsic Functions

*-- -----------
* Introduce deliberate invalid UTF- 8 character into document
*-- -----------

Move '5' to u(37:1)
*-- -----------
* Attempt to Parse the damaged XML document
*-- -----------

Display 'Parsing UTF- 8 document:'
Xml Parse u encoding 1208 processing procedure h

On Exception Move 16 To Return-Code
Display ' '
Display '>> PARSE failed!! <<'
Display ' '

End-XML
Goback.

30

New UTF-8 Intrinsic Functions

OUTPUT:

Parsing UTF-8 document:
XML event name XML-CODE {XML-TEXT}

START-OF-DOCUMENT 000000000 {}
START-OF-ELEMENT 000000000 {Grp}
START-OF-ELEMENT 000000000 {D1}
CONTENT-CHARACTERS 000000000 {1324.56}
END-OF-ELEMENT 000000000 {D1}
START-OF-ELEMENT 000000000 {D2}
EXCEPTION 000798768 {<Grp><D1>1324.56</D1><D2>

<D2>Leo Jan}}

>> PARSE failed!! <<

31

• How do we avoid the XML PARSE exception?
• There is no IBM provided way to validate UTF-8 data in

Enterprise COBOL V4
• You could write a UTF-8 checker, but it would take many

LOC in COBOL to do it
� You would have to maintain that code!

• In comes Enterprise COBOL V5.1 …

New UTF-8 Intrinsic Functions

32

Process CODEPAGE(1153)

*-- ---------------
* Sample program to illustrate use of the new Unico de
* intrinsic Functions for manipulating UTF-8 charac ter strings
*-- ---------------

Identification Division.
Program-id. UTF8CLAS.

Data Division.
Working-storage section.

1 i Comp pic 99 Value 1.
88 Valid-UTF-8 Value 0.

*-- ---------------
* XML document with Czech characters in EBCDIC
*-- ---------------

1 d pic x(99) value
'<Grp><D1>1324.56</D1><D2>Leoš Janáèek</D2></Grp>'.

1 u pic x(99).
1 x Comp pic 99.
1 y Comp pic 99.
1 z Comp pic 99.

New UTF-8 Intrinsic Functions

33

Procedure Division.
*-- ---------------
* Translate XML document from (viewable) EBCDIC to UTF-8
*-- ---------------

Move Function Display-of(Function National-of(d) 12 08) to u
*-- ---------------
* Introduce deliberate invalid UTF-8 character into document
*-- ---------------

Move '5' to u(37:1)
*-- ---------------
* Attempt to parse the damaged XML document
*-- ---------------

Perform Parse
Perform UTF-8-check
If Not Valid-UTF-8

Perform Repair-It
End-If

*-- ---------------
* Re-attempt the XML Parse if document OK now
*-- ---------------

If Valid-UTF-8
Perform Parse

End-If

New UTF-8 Intrinsic Functions

34

*-- ---------------
* Use COBOL XML Parse statement to analyze the XML document:
*-- ---------------

Parse.
Display 'Parsing UTF-8 document:'
Xml Parse u encoding 1208 processing procedure h

On Exception Move 16 To Return-Code
Display ' '
Display '>> PARSE failed!! <<'
Display ' '

Not On Exception Move 2 To Return-Code
Display ' '
Display '>> PARSE success!! <<'
Display ' '

End-XML.

New UTF-8 Intrinsic Functions

35

The following code can check your UTF-8 before parse

UTF-8-check.
Compute i = Function UVALID(u)
If Valid-UTF-8

Display 'UTF- 8 character string is valid.'
Else

Display 'Bad UTF- 8 character sequence at position ' i ';'
End-if.

New UTF-8 Intrinsic Functions

36

OUTPUT:

Parsing UTF-8 document:

XML event name XML-CODE {XML-TEXT}

--

START-OF-DOCUMENT 000000000 {}

START-OF-ELEMENT 000000000 {Grp}

START-OF-ELEMENT 000000000 {D1}

CONTENT-CHARACTERS 000000000 {1324.56}

END-OF-ELEMENT 000000000 {D1}

START-OF-ELEMENT 000000000 {D2}

EXCEPTION 000798768 {<Grp><D1>1324.56</D1><D2> }

>> PARSE failed!! <<

Bad UTF-8 character sequence at position 37;

New UTF-8 Intrinsic Functions

37

The following code will better diagnose bad UTF-8

UTF-8-check.
Compute i = Function UVALID(u)
If Valid-UTF-8

Display 'UTF- 8 character string is valid.'
Else

Display 'Bad UTF-8 character sequence at position ' i ';'
Compute x = Function ULENGTH(u(1:i - 1))
Compute y = Function UPOS(u x)
Compute z = Function UWIDTH(u x)
Display 'The ' x 'th and last valid character start s '

'at byte ' y ' for ' z ' bytes.'
End-if.

New UTF-8 Intrinsic Functions

38

OUTPUT:

Parsing UTF-8 document:

XML event name XML-CODE {XML-TEXT}

--

START-OF-DOCUMENT 000000000 {}

START-OF-ELEMENT 000000000 {Grp}

START-OF-ELEMENT 000000000 {D1}

CONTENT-CHARACTERS 000000000 {1324.56}

END-OF-ELEMENT 000000000 {D1}

START-OF-ELEMENT 000000000 {D2}

EXCEPTION 000798768 {<Grp><D1>1324.56</D1><D2>Leo}

>> PARSE failed!! <<

Bad UTF-8 character sequence at position 37;

The 34th and last valid character starts at byte 35 for 02 bytes.

New UTF-8 Intrinsic Functions

39

The following code can ‘repair’ bad UTF-8 data

*-- -----------
* Repair the bad UTF-8 character
*-- -----------

Repair-It.
Display ' '
Display 'Repairing bad UTF-8 sequence...'
Perform Test after until i = 0

*-- -----------
* x'30' is 0 (zero) in UTF-8
*-- -----------

Move x'30' to u(i:1)
Compute i = Function UVALID(u)

End-perform.

New UTF-8 Intrinsic Functions

40

OUTPUT:

Parsing UTF-8 document:

XML event name XML-CODE {XML-TEXT}

--

START-OF-DOCUMENT 000000000 {}

START-OF-ELEMENT 000000000 {Grp}

START-OF-ELEMENT 000000000 {D1}

CONTENT-CHARACTERS 000000000 {1324.56}

END-OF-ELEMENT 000000000 {D1}

START-OF-ELEMENT 000000000 {D2}

EXCEPTION 000798768 {<Grp><D1>1324.56</D1><D2>Leo}

>> PARSE failed!! <<

Bad UTF-8 character sequence at position 37;

The 34th and last valid character starts at byte 35 for 02 bytes .

New UTF-8 Intrinsic Functions

41

OUTPUT cont.:

Repairing bad UTF-8 sequence...
Parsing UTF-8 document:

XML event name XML-CODE {XML-TEXT}
--
START-OF-DOCUMENT 000000000 {}
START-OF-ELEMENT 000000000 {Grp}
START-OF-ELEMENT 000000000 {D1}
CONTENT-CHARACTERS 000000000 {1324.56}
END-OF-ELEMENT 000000000 {D1}
START-OF-ELEMENT 000000000 {D2}
CONTENT-CHARACTERS 000000000 {Leo00 Jan ek}
END-OF-ELEMENT 000000000 {D2}
END-OF-ELEMENT 000000000 {Grp}
END-OF-DOCUMENT 000000000 {}

>> PARSE success!! <<

New UTF-8 Intrinsic Functions

42

• We have 3 example programs
� New UTF-8 Intrinsic Functions
� New XML GENERATE features
� New XML PARSE features

• XML GENERATE example
� Generates an XML document from a group, but we have

done post-processing the document to
• Remove ‘empty’ entries
• Change tag names:

� Different from what is in structure
� Not legal as data item names
� Use a COBOL reserved word

• Select which values are ELEMENT and which are ATTRIBUTES

� Create correct XML document output the first time
• Post-processing was the only solution in COBOL V4

Examples of COBOL new features

43

XML GENERATE features: before

Process DYNAM
*-- -----------
* Demonstrate missing features of XML Generate stat ement
* in Enterprise COBOL V4.2
*-- -----------

Identification division.
Program- Id. XMLGB4.

Data Division.
Working- Storage Section.

77 DOC Pic x(9999).
01 Inventory.

05 CBX-764-WSR- LOC Pic x(30).
05 Product- Count comp Pic 999.
05 Product Occurs 10 times.

10 Description Pic x(20).
10 Quantity comp Pic 999.
10 Date- Acquired Pic x(10).

44

Procedure Division.

*-- ---------------
* Fill data structure, Generate default XML, and "p retty-print" it
*-- ---------------

Perform Set-Up-Inventory
Xml Generate DOC from Inventory Count in Tally
Display "XML GENERATE produced " Tally " bytes of o utput"

*-- ---------------
* Notice several issues with the default XML:
* - Unwanted table entries with zero values
* - Inappropriate or unappealing tag names
*-- ---------------

Call 'pretty' using DOC Tally
Goback.

XML GENERATE features: before

45

*-- ---------------
* Set up data structure with sample values. Notice that, although
* the table has ten entries, only three contain rel evant data.
*-- ---------------

Set-Up-Inventory.
Initialize Inventory
Move 'Orlando' to CBX-764-WSR-LOC
Add 1 to Product-Count
Move 'Carbon filter' to Description(Product-Count)
Move 34 to Quantity(Product-Count)
Move '04/12/2012' to Date-Acquired(Product-Count)
Add 1 to Product-Count
Move '100'' Hose' to Description(Product-Count)
Move 20 to Quantity(Product-Count)
Move '08/25/2012' to Date-Acquired(Product-Count)
Add 1 to Product-Count
Move 'Palette' to Description(Product-Count)
Move 120 to Quantity(Product-Count)
Move '06/01/2011' to Date-Acquired(Product-Count).

End program XMLGB4.

XML GENERATE features: before

46

Program-Id. PRETTY.
. . .

Procedure Division using doc value len.
. . .

XML PARSE doc Processing Procedure P
Goback
.

p.
Evaluate xml-event

When 'VERSION-INFORMATION'
String '<?xml version="' xml-text '"' delimited by size

into buffer with pointer posd
Set xml-declaration to true

When 'ENCODING-DECLARATION'
String ' encoding="' xml-text '"' delimited by size

into buffer with pointer posd
When 'STANDALONE-DECLARATION'

String ' standalone="' xml-text '"' delimited by si ze
into buffer with pointer posd

XML GENERATE features: before

47

XML GENERATE subprogram ‘pretty’
When 'START-OF-ELEMENT'

Evaluate true
When xml-declaration

String '?>' delimited by size into buffer
with pointer posd

Set unknown to true
Perform printline
Move 1 to posd

When element
String '>' delimited by size into buffer

with pointer posd
When attribute

String '">' delimited by size into buffer
with pointer posd

End-evaluate
If elementName not = space

Perform printline
End-if
Move xml-text to elementName
Add 1 to depth
Move 1 to pose
Set element to true

48

OUTPUT:

XML GENERATE produced 01169 bytes of output
<Inventory>

<CBX-764-WSR-LOC>Orlando</CBX-764-WSR-LOC>
<Product-Count>3</Product-Count>
<Product>

<Description>Carbon filter</Description>
<Quantity>34</Quantity>
<Date-Acquired>04/12/2012</Date-Acquired>

</Product>
<Product>

<Description>100' Hose</Description>
<Quantity>20</Quantity>
<Date-Acquired>08/25/2012</Date-Acquired>

</Product>

XML GENERATE features: before

49

OUTPUT (cont.):
<Product>

<Description>Palette</Description>
<Quantity>120</Quantity>
<Date-Acquired>06/01/2011</Date-Acquired>

</Product>
<Product>

<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>
<Product>

<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>
<Product>

<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>

XML GENERATE features: before

50

OUTPUT (cont.):

<Product>
<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>
<Product>

<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>
<Product>

<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>
<Product>

<Description> </Description>
<Quantity>0</Quantity>
<Date-Acquired> </Date-Acquired>

</Product>
</Inventory>

XML GENERATE features: before

51

Process DYNAM

*-- ------------
* Demonstrate features of XML Generate statement ad ded to
* Enterprise COBOL V5.1
*-- ------------

Identification division.
Program-Id. XMLGCLAS.

Data Division.
Working-Storage Section.

77 DOC Pic x(9999).
*-- ------------
* Use the same structure for source of XML
*-- ------------

01 Inventory.
05 CBX-764-WSR-LOC Pic x(30).
05 Product-Count comp Pic 999.
05 Product Occurs 10 times.

10 Description Pic x(40).
10 Quantity comp Pic 9(3).

10 Date-Acquired Pic x(10).

XML GENERATE features: after

52

Add the following phrases to XML GENERATE :

Xml Generate DOC from Inventory Count in tally
Name of CBX-764-WSR- LOC is 'Warehouse'

Description is 'Desc'
Quantity is 'No.'
Date- Acquired is 'Date'

Type of Quantity is Attribute
Suppress Every Nonnumeric Element When SPACE

Every Numeric When ZERO
End- xml
Display "XML GENERATE produced " Tally " bytes of o utput"
Call 'pretty' using DOC tally
Goback.

XML GENERATE features: after

53

OUTPUT:
XML GENERATE produced 00312 bytes of output
<Inventory>

<Warehouse >Orlando</ Warehouse >
<Product-Count>3</Product-Count>
<Product No.="34" >

<Desc>Carbon filter</ Desc>
<Date >04/12/2012</ Date >

</Product>
<Product No.=“20" >

<Desc>100' Hose</Desc>
<Date>08/25/2012</Date>

</Product>
<Product No.=“120" >

<Desc>Palette</Desc>
<Date>06/01/2011</Date>

</Product>
</Inventory>

XML GENERATE features: after

54

• We have 3 example programs
� New UTF-8 Intrinsic Functions
� New XML GENERATE features
� New XML PARSE features

• XML PARSE example
� XMLSS parser can give split content

• ATTRIBUTE-CHARACTERS
• CONTENT-CHARACTERS

� Example shows how to handle possible split content
• Without XML-INFORMATION (Ugly!)
• What terminates an attribute value?

• Almost any event! But no event for ‘>’ (end of tag)
• Have to buffer attribute value separately from elements

• With XML-INFORMATION special register

Examples of COBOL new features

55

handler.
evaluate xml-event

when 'START-OF-DOCUMENT'
move 0 to attr-bufr-ctr cont-bufr-ctr
move 1 to attr-bufr-ptr cont-bufr-ptr

when 'ATTRIBUTE-NAME'
perform collect-attr-bufr
move xml-text to attr-name

when 'ATTRIBUTE-CHARACTERS'
perform append-attr-bufr

when 'COMMENT'
when 'NAMESPACE-DECLARATION'
when 'PROCESSING-INSTRUCTION-TARGET'
when 'START-OF-CDATA-SECTION'

perform collect-attr-bufr
when 'CONTENT-CHARACTERS'

perform collect-attr-bufr
perform append-cont-bufr

XML PARSE features: before

56

handler. *> continued
when 'END-OF-ELEMENT'

perform collect-attr-bufr
perform collect-cont-bufr

when 'START-OF-ELEMENT'
perform collect-attr-bufr
perform collect-cont-bufr
move xml-text to elmt-name

when 'ATTRIBUTE-NATIONAL-CHARACTER'
perform unsupported-event

when 'CONTENT-NATIONAL-CHARACTER'
when 'UNRESOLVED-REFERENCE'

perform collect-attr-bufr
perform unsupported-event

when other
continue

end-evaluate.

XML PARSE features: before

57

collect-attr-bufr.
if attr-bufr-ptr > 1

subtract 1 from attr-bufr-ptr
if attr-name = 'this'

move attr-bufr(1:attr-bufr-ptr) to this
else

move attr-bufr(1:attr-bufr-ptr) to that
end-if
display attr-bufr-ctr ' segments of attribute "' at tr-name

'" of element "' elmt-name '"'
display ' reassembled, length ' attr-bufr-ptr ': '
display " '" attr-bufr(1:13) '...'

attr-bufr(attr-bufr-ptr - 2:3) "'"
display ' '
move 0 to attr-bufr-ctr
move 1 to attr-bufr-ptr
move space to attr-name

end-if.

XML PARSE features: before

58

append-attr-bufr.
string xml-text delimited by size into attr-bufr

with pointer attr-bufr-ptr
add 1 to attr-bufr-ctr
display 'Buffering segment ' attr-bufr-ctr ' of att ribute "'

attr-name '" of element "' elmt-name '"'.

XML PARSE features: before

59

• XML PARSE features: before
� Lots of code ‘just in case’ content gets split
� Example is minimized, real world example is even worse

• XML PARSE features: after
� XML-INFORMATION tells us when content is complete

• Only need 1 buffer since collecting attribute data will not
be ended by element content

• Can do all work within code for ATTRIBUTE-
CHARACTERS and CONTENT-CHARACTERS events

• Not spread all over the program

New XML PARSE features

60

handler.
Evaluate xml-event

When 'START-OF-DOCUMENT'
move 1 to bufr-ptr *> Only 1 buffer ptr to in it

When 'ATTRIBUTE-NAME‘ *> No setup necessary
Move xml-text to attr-name *> Just save the name

When 'ATTRIBUTE-CHARACTERS‘ *> Handle attribute valu e
Evaluate XML-INFORMATION

When 1 *> If content is complete
Perform get-attr-bufr *> Get last piece
If attr-name = 'this'

Move char-bufr(1:bufr-ptr) to this
Else

Move char-bufr(1:bufr-ptr) to that
end-if

When 2 *> If split content
Perform get-char-bufr *> Get next piece

When Other *> Error condition
Call ‘CEE3ABND’

End-Evaluate

XML PARSE features: after

61

handler. *> Continued
When 'NAMESPACE-DECLARATION'
When 'PROCESSING-INSTRUCTION-TARGET'
When 'START-OF-CDATA-SECTION‘
When 'COMMENT‘ *> Nothing to do here for

Continue *> buffer data ‘after’
When 'CONTENT-CHARACTERS‘ *> Handle element value

Evaluate XML-INFORMATION
When 1 *> If content is complete

Perform get-attr-bufr *> Get last piece
Evaluate element-name *> Move into data item

When ‘xyz’
Move char-bufr(1:bufr-ptr) to xyz

etc, etc
. . .

End-Evaluate
When 2 *> If split content

Perform get-char-bufr *> Get next piece
When Other *> Error condition

Call ‘CEE3ABND’
End-Evaluate

XML PARSE features: after

62

handler. *> Continued
when 'END-OF-ELEMENT‘ *> Nothing to do here for

Continue *> buffer data ‘after’
when 'START-OF-ELEMEN *> Nothing to do here for

Continue *> buffer data ‘after’
move xml-text to elmt-name

when 'ATTRIBUTE-NATIONAL-CHARACTER'
perform unsupported-event

when 'CONTENT-NATIONAL-CHARACTER'
when 'UNRESOLVED-REFERENCE‘ *> Nothing to do here fo r

Continue *> buffer data ‘after’
perform unsupported-event

when other
continue

end-evaluate.

XML PARSE features: after

63

get-char-bufr.
string xml-text delimited by size into char-bufr

with pointer bufr-ptr
display 'Buffer content so far = ‘

char-bufr(1:bufr-ptr)

XML PARSE features: after

64

• Debug Tool improvements for COBOL V5

65

Debug Tool improvements for COBOL V5

• Debug Tool was completely re-instrumented to work with COBOL V5.1:

� Access to DWARF debug data in NOLOAD classes
� Change to Debug Tool ‘Level 4 APIs’ from historic level 1
� New COBOL runtime and COBOL debug support runtime

• As we worked, the question was often posed:

Do we implement this the old way or this obviously better way?

• A few of the many improvements in the Debug Tool experience with
COBOL V5.1:

� STEP OVER of PERFORM statements
� Improved presentation of tables (arrays)
� Improved presentation of data descriptions

66

COBOL
COMPILER

Program Object
On disk
(Load Library)

Storage used by COBOL V5 Storage used by COBOL V5
program objects compiled w/TESTprogram objects compiled w/TEST

Executable
code

NOLOAD
Debug

Information

COBOL
COMPILER

Executable
code

COBOL
COMPILER

Executable
code

NOLOAD
Debug

Information

Program Object
In Memory
(Loaded/running,
No Debug Tool)

Program Object
In Memory
(Loaded/debugging
Debug Tool also
running)

67

When 'START-OF-ELEMENT'

Evaluate true
When xml-declaration

String '?>' delimited by size into buffer
with pointer posd

Set unknown to true
Perform printline
Move 1 to posd

When element
String '>' delimited by size into buffer

with pointer posd
When attribute

String '">' delimited by size into buffer
with pointer posd

End-evaluate
If elementName not = space

Perform printline
End-if

STEP OVER of PERFORMSTEP OVER of PERFORM

Debug Tool improvements for COBOL V5

68

Improved presentation of tables (arrays)

Debug Tool with COBOL V4:
LIST PRODUCT (3) ;
SUB(3) of 03 XMLGB4:>DESCRIPTION of 02 XMLGB4:>PRODUCT =
'Palette '
SUB(3) of 03 XMLGB4:>QUANTITY of 02 XMLGB4:>PRODUCT = 00120
SUB(3) of 03 XMLGB4:>DATE-ACQUIRED of 02 XMLGB4:>PRODUCT =

'06/01/2011'

Debug Tool with COBOL V5:
LIST PRODUCT (3) ;

10 DESCRIPTION of 05 PRODUCT(3) = 'Palette '
10 QUANTITY of 05 PRODUCT(3) = 00120
10 DATE-ACQUIRED of 05 PRODUCT(3) = '06/01/2011'

Debug Tool improvements for COBOL V5

69

Debug Tool with COBOL V4:
DESCRIBE ATTRIBUTES INVENTORY ;
ATTRIBUTES for INVENTORY
Its length is 352
Its address is 0DF7C480
01 XMLGB4:>INVENTORY
02 XMLGB4:>CBX-764-WSR-LOC X(30) DISP
02 XMLGB4:>PRODUCT-COUNT 999 COMP
02 XMLGB4:>PRODUCT AN-GR OCCURS 10
03 XMLGB4:>DESCRIPTION X(20)
SUB(1) DISP
SUB(2) DISP
SUB(3) DISP
SUB(4) DISP
SUB(5) DISP
SUB(6) DISP
SUB(7) DISP
SUB(8) DISP
SUB(9) DISP
SUB(10) DISP

03 XMLGB4:>QUANTITY 999 ‘

etc
etc

Improved presentation of data descriptions
Debug Tool improvements for COBOL V5

70

Debug Tool with COBOL V5:
DESCRIBE ATTRIBUTES INVENTORY ;
ATTRIBUTES for INVENTORY

Its length is 352
Its address is 0E010E20
01 INVENTORY
05 CBX-764-WSR-LOC x(30) DISP
05 PRODUCT-COUNT 999 COMP
05 PRODUCT OCCURS 10

10 DESCRIPTION x(20) DISP
10 QUANTITY 9(3) COMP
10 DATE-ACQUIRED x(10) DISP

Debug Tool improvements for COBOL V5

71

Cafes

C/C++
http://ibm.com/rational/community/cpp

COBOL
http://ibm.com/rational/community/cobol

Fortran
http://ibm.com/rational/community/fortran

PL/I
http://ibm.com/rational/community/pli

Cafes

C/C++
http://ibm.com/rational/community/cpp

COBOL
http://ibm.com/rational/community/cobol

Fortran
http://ibm.com/rational/community/fortran

PL/I
http://ibm.com/rational/community/pli

Feature Requests

C/C++
http://ibm.com/developerworks/rfe/?PROD_ID=700

COBOL
http://ibm.com/developerworks/rfe/?PROD_ID=698

Fortran
http://ibm.com/developerworks/rfe/?PROD_ID=701

PL/I
http://ibm.com/developerworks/rfe/?PROD_ID=699

Feature Requests

C/C++
http://ibm.com/developerworks/rfe/?PROD_ID=700

COBOL
http://ibm.com/developerworks/rfe/?PROD_ID=698

Fortran
http://ibm.com/developerworks/rfe/?PROD_ID=701

PL/I
http://ibm.com/developerworks/rfe/?PROD_ID=699

Connect With Us

Like IBM Compilers on Facebook Follow IBM Compilers on Twitter

72

Enterprise COBOL Service: PTF1!

• APARs fixed in the September PTF1 bundle:
� COMPILER UK96988/UK96989/UK97247 PTFs

PM92585 - COBOL version 5 fixes for problems identified in
beta program and Japanese message updates
PM95418 - CMPL MSGIGYCB7104-U Internal compiler error
and RC16 using options offset and test
PM95906 - Message number 1307 could not be found for facility ID IGY

� RUNTIME UK96719/UK96720 PTFs
PM93979 - Move static initialization to the heap
PM95114 - COBOL runtime sort ABENDs in DFSORT
PM95117 - COBOL performance degradation in procedure pointer call
PM95118 - COBOL runtime error in handling external files plus error
when using procedure pointer
PM93345 - XML enhancements(z/OS 2.1 only)

73

Enterprise COBOL Service: PTF2!

• APARs fixed in the October PTF2 bundle:
� COMPILER UK98481/UK98482/UK98483/UK98499 PTFs

PM92523 - IMS support enhancement SQLIMS
PM92894 - ABEND322 loop in IGYCDGEN during compile of COBOL
program using NOTEST(DWARF)
PM96176 - IGYWDOPT and IGYWUOPT are missing from SIGYSAMP
PM97763 - Changing DISPSIGN compiler option default to SEP fails
PM97939 - Compiler creates invalid special register table

� RUNTIME UK98140/UK98141 PTFs
PM98032 - The external file I/O verb may use the wrong version of the I/O
routines and ABEND

74

Enterprise COBOL Service: PTF3!

• APARs fixed in the January PTF3 bundle:
� COMPILER UI14448 PTF

PI05656 - CMPL loop in compile of COBOL/SQL coprocessor program with
"REPLACE" and missing "END-EXEC.“
PI05657 - IGYPS5062-U There was insufficient storage.
PI05658 - COBOL COPY...REPLACING errors using EXEC to replace
partial dataname or paragraph name.
PI06128 - IGYDS0197-E "11" was a name that started with an underscore
PI06899 - No compiler error recieved for abbreviated IF statement with
confusion about implied subject.
PI08238 - Compiler generates incorrect code for PERFORM UNTIL
statement.
PM99261 - Expected division-by-zero message is not being printed

� RUNTIME UI14246(V1R13) / UI14247(V2R1) PTFs
PI09629 - UNSTRING statement can be inefficient if the input string is too
long when delimiter is not present in the input string

75

Enterprise COBOL Service: PTF4!
AKA: V5R1M1

• APARs fixed in the March PTF4 bundle:
� COMPILER UI16133/UI16134/UI16135 PTFS

PM93583 - COBOL 5.1.1 - UPDATE TO ADD AMODE 24 SUPPORT TO
ENTERPRISE COBOL VERSION 5.1
PI07531 - IGYCB7145-U insufficient memory at compile time
PI11399 - Compiler error when mixing PERFORM & PERFORM w/THRU
PI11805 - V5.1 batch compilation that specifies DLL may fail with error
IGYCB7104-U with "Failed assertion on ./WCode/WCodeDefs.hpp:261“
PI13222 - COBOL 5.1 compile with OPT(1) returns error IGYCB7104-U -
Failed assertion on ./Register.cpp:1034

76

Enterprise COBOL Service: PTF4!
AKA: V5R1M1

• APARs fixed in the March PTF4 bundle:
� RUNTIME UI15839(V1R13) / UI15840(V2R1) PTFs

PI08326 CEE3201S followed by ABENDU4083 when COBOL program
specifies sort parm LOCALE=FR_CA
PI10522 COBOL version 5 program not entered in last used state when 1st
called from a COBOL version 4 program
PI10647 COBOL V5.1 0C4 ABEND using VSAM file with VSHARE during
VSAM EXIT
PI11295 USUPPLEMENTARY function returns unexpected results for national
characters & Language Reference Guide has a USUPPLEMENTARY typo
PI11389 API routine to query the COBOL working storage area PI12151
COBOL runtime enhancement for AMODE(24)
PI12928 COBOL V5 runtime event handler does not handle LE Event 31
properly so WORKING-STORAGE address/length unavailable
PI13285 Wrong conversion of blanks when using codepage 937 DBCS

77

Enterprise COBOL Developer Trial

• Zero cost evaluation license for 90 days
� Does not initiate Single Version Charging (SVC)

• Assess the value that could be gained from upgrading to
Enterprise COBOL V5.1

• Offer same functionalities as Enterprise COBOL for z/OS V5 .1
� Same pre-requisites (e.g. runs on z/OS V1.13 and z /OS V2.1…)
� Code compiled with Enterprise COBOL Developer Trial cannot be

used for production

• Available as standard offering from IBM through ShopzSe ries on
Oct 4, 2013
� Contact your IBM representative for ordering assist ance

http://www-03.ibm.com/software/products/ph/en/enterprise-cobol-developer-trial-for-zos

78

Program Mission:

To involve clients early in the design and development process of our products to
improve quality , deliver the right strategy and features , increase client
satisfaction and loyalty , and secure references .

Enterprise COBOL Design Partner Program

Benefits to participants
�Direct input on design of new COBOL features

�Visibility into product strategy and roadmaps

�Early experience with pre-release drivers

Nomination:
https://www.ibm.com/software/support/trial/cst/forms/nomination.
wss?id=2279

Program contacts:
�Marie Bradford mabrad@us.ibm.com

� Roland Koo rkoo@ca.ibm.com

79

• Questions?

80

PDSE requirement for
COBOL V5 executables

• COBOL V5 executables are not “load modules”. They
are “program objects”. Load modules reside in a PDS
dataset. Program objects can only reside in a PDSE
dataset (or z/OS UNIX file).

• Therefore, customers using PDS load libraries for
COBOL executables must migrate to PDSE load libraries
prior to creating COBOL V5 executables. There is no
alternative to converting.

• If interested in COBOL V5, start migrating COBOL load
libraries to PDSE datasets ASAP!

• Now, why PDSE datasets and why are PDSE datasets
better than PDS datasets?

81

First some history about PDS datasets

• When using PDS datasets for load libraries,
customers had problems with :
� The need for frequent compressions,
� Loss of data due to the directory being overwritten
� Performance impact due to a sequential directory search
� Performance delay if member added to beginning of

directory
� Problems when PDS went into multiple extents

82

First some history about PDS datasets

• More problems with PDS dataset load libraries:
� PDS datasets could not share update access to members

without an enqueue on the entire data set.
� The biggest drawback to PDS load libraries was that they

had to be taken offline from time to time for:
• A compression to reclaim member space or
• Directory reallocation to reclaim directory gas

� Because of this, applications could not have 24/7/365
access

83

Introducing PDSE datasets for load libraries!

• PDSEs, which were introduced in 1990, were designed
to eliminate or at least reduce these problems

• They have! It's unfortunate that the rollout of PDSEs
was so painful (lots and lots of APARs) that many sites
have steered clear of them

• OTOH, many sites HAVE moved their COBOL load
libraries to PDSEs, it is fairly mechanical

84

How to migrate from PDS load libraries to
PDSE load libraries:

• Assuming the conversion of an entire PDS to a PDSE,
the general steps are as follows:
� Allocate a new PDSE dataset, such as &pds.PDSE, where

“&pds” is the PDS dataset name.
� Use IEBCOPY (or ISPF) to copy the load modules from

the PDS into the PDSE.
• This will automatically convert the load modules to program

objects in the PDSE.

� Rename the PDS. Example: &pds.BACKUP. Retain this
dataset (short term) for recovery purposes.

� Rename the PDSE to &pds, where “&pds” is the original
PDS dataset name.

85

How to migrate from PDS load libraries to
PDSE load libraries, some notes:

• Any Load Module in a PDS can be copied into a PDSE
� It then becomes a Program Object
� Program Management Binder is called by IEBCOPY or

ISPF to do the conversion for you

• Not all Program Objects in PDSEs can be copied back
to PDS and Load Module form

• This means that if a Program Object member in a PDSE
on a test system is then shipped to production, and the
receiving dataset on the production system is a PDS,
then there could be a copy problem.

• Convert the downstream library first, i.e. convert the
production PDS to a PDSE. Then convert the test
system PDS to a PDSE.

86

Why are PDSE load libraries required with
COBOL Version 5?

• First some history about Load Modules
� z/OS has been moving to solve problems due to

limitations of Load Modules for years
� Program Management BINDER has made many changes

to solve these problems
� Many of these solutions required a new format of

executable
� Program Objects was the answer
� Program Objects have features that cannot be supported

by PDS datasets, so they require PDSE datasets

87

Load Modules versus Program Objects

• Program Management Binder solves existing problems with
Load Modules using new features of Program Objects
� Example: when customers reached 16M text size limit of load

module, our answer was always: “Re-engineer programs to
be smaller, re-design” …expensive and not well received!

� A program object can have a text size of up to 1 gigabyte
� COBOL can take advantage of this by having more constants

for improved MOVE and INITIALIZE performance
• Makes object size bigger

88

Why are PDSE load libraries required with
COBOL Version 5?

• COBOL V4 required Program Objects and thus PDSE
for executable for certain features since 2001:
� Long program names
� Object-Oriented COBOL
� DLLs using the Binder instead of prelinker

• COBOL V5 requires Program Objects and thus PDSE
load libraries for all executables

• How about some examples of specific features that
COBOL V5 has that can only be supported by Program
Objects (PO) and PDSE Load libraries?

89

Why PDSE for COBOL V5 executables?

• COBOL improving performance using new features that
are only available in Program Objects (PO)
� Improved init/term scheme relies on user-defined classes in

object, requiring PO
� QY-con requires PO

• That's a performance improvement for RXY (long
displacement) instructions.

� Condition-sequential RLD support requires PO
• Performance improvement for bootstrap invocation

� PO can get page mapped 4K at a time for better
performance

90

Why PDSE for COBOL V5 executables?

• Other features requiring Program Objects
� NOLOAD class DWARF debugging data requires PO
� Common reentrancy model with C/C++ requires PO
� XPLINK requires PO and will be used for AMODE 64

91

What about sharing COBOL load libraries
across SYSPLEX systems?

• PDSE datasets cannot be shared across SYSPLEX
boundaries

• If PDS load libraries are shared across SYSPLEX
boundaries today, in order to move to PDSE load libraries,
customers can use a master-copy approach
� One SYSPLEX can be the writer/owner of master PDSE

load library (development SYSPLEX)
� When PDSE load library is updated, push the new copy out

to production SYSPLEX systems with XMIT or FTP
� The other SYSPLEX systems would then RECEIVE the

updated PDSE load library

92

Can I mix PDS and PDSE load libraries?

• If you convert all load libraries to PDSE first, no worries
� IE: You will no longer have any PDS load libraries

• If you create a new PDSE dataset and put new code there
while keeping existing load modules in PDS load library,
you could end up using both PDS and PDSE load libraries
in a single application:
� COBOL V5 in PDSE load library can call COBOL V4 in PDS

load library without problems (and vice-versa)
� DYNAMIC CALL only of course

• If you start with COBOL V4 (or V3, V2) code in a PDS
load library and recompile one program of a load module
with COBOL V5, and then re-BIND, the result will be a
Program Object, and will go into a PDSE
� STATIC CALL in this case

